张量与黎曼几何:微分方程应用(英文版)
作者: Nail H.Ibragimov
出版时间:2015-04
出版社:高等教育出版社
- 高等教育出版社
 - 9787040423853
 - 1版
 - 98615
 - 48265953-9
 - 精装
 - 16开
 - 2015-04
 - 170
 - 187
 - O186.12
 - 数学、统计类
 - 本科 研究生及以上
 
《张量与黎曼几何(微分方程应用英文版)(精)/非线性物理科学》是作者在俄罗斯、法国、 南非和瑞典多年讲授黎曼几何与张量课程讲义的基础 上整理而成。本书通俗易懂、叙述清晰。通过阅读本 书,读者将轻松掌握应用张量、黎曼几何的理论以及 几何化的方法求解偏微分方程,尤其是利用近似重整 化群理论将大大简化de Sitter 空间中广义相对论方 程的求解。
Nail H. Ibragimov教授为瑞典科学家,被公认为是在微分方程对称分析方面世界上最具权威的专家 之一。他发起并构建了现代群分析理论和应用方面很多新的发展。
  前辅文
  Part I Tensors and Riemannian spaces
   1 Preliminaries
    1.1 Vectors in linear spaces
    1.2 Index notationSummation convention
    Exercises
   2 Conservation laws
    2.1 Conservation laws in classical mechanics
    2.2 General discussion of conservation laws
    2.3 Conserved vectors defined by symmetries
    Exercises
   3 Introduction of tensors and Riemannian spaces
    3.1 Tensors
    3.2 Riemannian spaces
    3.3 Application to ODEs
    Exercises
   4 Motions in Riemannian spaces
    4.1 Introduction
    4.2 Isometric motions
    4.3 Conformal motions
    4.4 Generalized motions
    Exercises
  Part II Riemannian spaces of second-order equations
   5 Riemannian spaces associated with linear PDEs
    5.1 Covariant form of second-order equations
    5.2 Conformally invariant equations
    Exercises
   6 Geometry of linear hyperbolic equations
    6.1 Generalities
    6.2 Spaces with nontrivial conformal group
    6.3 Standard form of second-order equations
    Exercises
   7 Solution of the initial value problem
    7.1 The Cauchy problem
    7.2 Geodesics in spaces with nontrivial conformal group
    7.3 The Huygens principle
    Exercises
  Part III Theory of relativity
   8 Brief introduction to relativity
    8.1 Special relativity
    8.2 The Maxwell equations
    8.3 The Dirac equation
    8.4 General relativity
    Exercises
   9 Relativity in de Sitter space
    9.1 The de Sitter space
    9.2 The de Sitter group
    9.3 Approximate de Sitter group.
    9.4 Motion of a particle in de Sitter space
    9.5 Curved wave operator.
    9.6 Neutrinos in de Sitter space
    Exercises
  Bibliography
  Index
 

                        
                        
                    















