- 电子工业出版社
 - 9787121416521
 - 1-2
 - 421610
 - 47245626-8
 - 平塑
 - 16开
 - 2022-06
 - 229
 - 176
 - 数学
 - 本科 研究生(硕士、EMBA、MBA、MPA、博士)
 
                            目录
                        
                        
                                第1章  插值与逼近.......................................................1 1.1  问题介绍..........................................................1 1.2  多项式插值.......................................................2 1.2.1  概述.......................................................2 1.2.2  Lagrange插值..............................................4 1.2.3  Newton插值...............................................6 1.2.4  分片线性插值..............................................8 1.2.5  Hermite插值..............................................10 1.3  径向基函数插值..................................................13 1.3.1  概述......................................................13 1.3.2  再生核空间...............................................16 1.3.3  误差估计..................................................18 1.4  最佳逼近.........................................................20 1.4.1  最小二乘拟合.............................................20 1.4.2  最佳一致逼近.............................................22 1.4.3  最佳平方逼近.............................................23 1.4.4  正交多项式...............................................24 1.5  注记.............................................................26 习题1................................................................27 第2章  数值微分与数值积分.............................................31 2.1  问题介绍.........................................................31 2.2  数值微分.........................................................31 2.2.1  Taylor展开求导...........................................31 2.2.2  插值型求导...............................................33 2.3  数值积分.........................................................35 2.3.1  中点、梯形和Simpson求积公式..........................35 2.3.2  Newton-Cotes求积公式...................................37 2.3.3  复合求积公式.............................................39 2.3.4  Romberg求积公式........................................40 2.3.5  Gauss求积公式...........................................41 2.4  注记.............................................................45 习题2................................................................46 第3章  求解线性方程组..................................................49 3.1  问题介绍.........................................................49 3.2  直接法...........................................................50 3.2.1  LU分解..................................................50 3.2.2  Cholesky分解.............................................52 3.2.3  QR分解..................................................53 3.3  基本迭代法......................................................56 3.3.1  三种基本迭代法...........................................56 3.3.2  收敛性准则...............................................61 3.4  共轭梯度法......................................................62 3.5  注记.............................................................66 习题3................................................................66 第4章  求解非线性方程组...............................................70 4.1  问题介绍.........................................................70 4.2  非线性方程的迭代法.............................................70 4.2.1  二分法....................................................71 4.2.2  不动点迭代...............................................72 4.2.3  Newton迭代..............................................74 4.2.4  割线法....................................................75 4.3  非线性方程组的迭代法...........................................78 4.3.1  基本非线性迭代法.........................................78 4.3.2  Newton迭代法............................................80 4.3.3  Broyden算法.............................................81 4.4  注记.............................................................83 习题4.............................                            
                            
                        
                        
                        
                    













