应用多元统计分析方法(第4版)(附软盘1片)(影印版) / 海外优秀数学教材
作者: Dallas E.Johnson
出版时间:2005-06-08
出版社:高等教育出版社
- 高等教育出版社
 - 9787040165456
 - 4版
 - 65551
 - 46244405-0
 - 平装
 - 异16开
 - 2005-06-08
 - 650
 - 567
 - O212.4
 - 统计学类、工学、理学
 - 本科 研究生及以上
 
《应用多元统计分析方法-影印版》设有大量的例题与练习题,实用面丰富,统计思维清晰。《应用多元统计分析方法-影印版》适用于高等院校统计学专业和理工 科各专业本科生和研究生作为双语教材使用。应用多元回归分析方法,样本相关,多元数据点图,特征值和特征向量,复合分析原理,因子分析,判别分析,逻辑斯谛回归方法,聚类分析,均值向量和方差-协方差矩阵,方差多元分析,预测模型和多元回归。《应用多元统计分析方法-影印版》统计内容覆盖面广于国内的概率统计教材,内容安排颇有新意,例如,在处理回归分析时,强调了从建模的观点与需要来考虑。
  1. APPLIED MULTIVARIATE METHODS
   1.1 An Overview of Multivariate Methods
    Variable-and Individual-Directed Techniques
    Creating New Variables
    Principal Components Analysis
    Factor Analysis
    Discriminant Analysis
    Canonical Discriminant Analysis
    Logistic Regression
    Cluster Analysis
    Multivariate Analysis of Variance
    Canonical Variates Analysis
    Canonical Correlation Analysis
    Where to Find the Preceding Topics
   1.2 Two Examples
    Independence of Experimental Units
   1.3 Types of Variables
   1.4 Data Matrices and Vectors
    Variable Notation
    Data Matrix
    Data Vectors
    Data Subscripts
   1.5 The Multivariate Normal Distribution
    Some Definitions
    Summarizing Multivariate Distributions
    Mean Vectors and Variance-Covariance Matrices
    Correlations and Correlation Matrices
    The Multivariate Normal Probability Density Function
    Bivariate Normal Distributions
   1.6 Statistical Computing
    Cautions About Computer Usage
    Missing Values
    Replacing Missing Values by Zeros
    Replacing Missing Values by Averages
    Removing Rows of the Data Matrix
    Sampling Strategies
    Data Entry Errors and Data Verification
   1.7 Multivariate Outliers Locating Outliers Dealing with Outliers Outliers May Be Influential
   1.8 Multivariate Summary Statistics
   1.9 Standardized Data and/or Z Scores
    Exercises
  2. SAMPLE CORRELATIONS
   2.1 Statistical Tests and Confidence Intervals
    Are the Correlations Large Enough to Be Useful?
    Confidence Intervals by the Chart Method
    Confidence Intervals by Fisher's Approximation
    Confidence Intervals by Ruben's Approximation
    Variable Groupings Based on Correlations
    Relationship to Factor Analysis
   2.2 Summary
    Exercises
  3. MULTIVARIATE DATA PLOTS
   3.1 Three-Dimensional Data Plots
   3.2 Plots of Higher Dimensional Data
    Chernoff Faces
    Star Plots and Sun-Ray Plots
    Andrews' Plots
    Side-by-Side Scatter Plots
   3.3 Plotting to Check for Multivariate Normality
    Summary
    Exercises
  4. EIGENVALUES AND EIGENVECTORS
   4.1 Trace and Determinant
    Examples
   4.2 Eigenvalues
   4.3 Eigenvectors
    Positive Definite and Positive Semidefinite Matrices
   4.4 Geometric Descriptions (p = 2)
    Vectors
    Bivariate Normal Distributions
   4.5 Geometric Descriptions (p = 3)
    Vectors
    Trivariate Normal Distributions
   4.6 Geometric Descriptions (p > 3)
    Summary
    Exercises
  5. PRINCIPAL COMPONENTS ANALYSIS
   5.1 Reasons for Using Principal Components Analysis
    Data Screening
    Clustering
    Discriminant Analysis
    Regression
   5.2 Objectives of Principal Components Analysis
   5.3 Principal Components Analysis on the Variance-Covariance Matrix Σ
    Principal Component Scores
    Component Loading Vectors
   5.4 Estimation of Principal Components
    Estimation of Principal Component Scores
   5.5 Determining the Number of Principal Components
    Method 1
    Method 2
   5.6 Caveats
   5.7 PCA on the Correlation Matrix P
    Principal Component Scores
    Component Correlation Vectors
    Sample Correlation Matrix
    Determining the Number of Principal Components
   5.8 Testing for Independence of the Original Variables
   5.9 Structural Relationships
   5.10 Statistical Computing Packages
    SASR PRINCOMP Procedure
    Principal Components Analysis Using Factor Analysis
    Programs
    PCA with SPSS's FACTOR Procedure
    Summary
    Exercises
  6. FACTOR ANALYSIS
   6.1 Objectives of Factor Analysis
   6.2 Caveats
   6.3 Some History of Factor Analysis
   6.4 The Factor Analysis Model
    Assumptions
    Matrix Form of the Factor Analysis Model
    Definitions of Factor Analysis Terminology
   6.5 Factor Analysis Equations
    Nonuniqueness of the Factors
   6.6 Solving the Factor Analysis Equations
   6.7 Choosing the Appropriate Number of Factors
    Subjective Criteria
    Objective Criteria
   6.8 Computer Solutions of the Factor Analysis Equations
    Principal Factor Method on R
    Principal Factor Method with Iteration
   6.9 Rotating Factors
    Examples (m = 2)
    Rotation Methods
    The Varimax Rotation Method
   6.10 Oblique Rotation Methods
   6.11 Factor Scores
    Bartlett's Method or the Weighted Least-Squares Method
    Thompson's Method or the Regression Method
    Ad Hoc Methods
    Summary
    Exercises
  7. DISCRIMINANT ANALYSIS
   7.1 Discrimination for Two Multivariate Normal Populations
    A Likelihood Rule
    The Linear Discriminant Function Rule
    A Mahalanobis Distance Rule
    A Posterior Probability Rule
    Sample Discriminant Rules
    Estimating Probabilities of Misclassification
    Resubstitution Estimates
    Estimates from Holdout Data
    Cross-Validation Estimates
   7.2 Cost Functions and Prior Probabilities (Two Populations)
   7.3 A General Discriminant Rule (Two Populations)
    A Cost Function
    Prior Probabilities
    Average Cost of Misclassification
    A Bayes Rule
    Classification Functions
    Unequal Covariance Matrices
    Tricking Computing Packages
   7.4 Discriminant Rules (More than Two Populations)
    Basic Discrimination
   7.5 Variable Selection Procedures
    Forward Selection Procedure
    Backward Elimination Procedure
    Stepwise Selection Procedure
    Recommendations
    Caveats
   7.6 Canonical Discriminant Functions
    The First Canonical Function
    A Second Canonical Function
    Determining the Dimensionality of the Canonical Space
    Discriminant Analysis with Categorical Predictor Variables
   7.7 Nearest Neighbor Discriminant Analysis
   7.8 Classification Trees
    Summary
    Exercises
  8. LOGISTIC REGRESSION METHODS
   8.1 Logistic Regression Model
   8.2 The Logit Transformation
    Model Fitting
   8.3 Variable Selection Methods
   8.4 Logistic Discriminant Analysis (More Than Two Populations)
    Logistic Regression Models
    Model Fitting
    Another SAS LOGISTIC Analysis
    Exercises
  9. CLUSTER ANALYSIS
   9.1 Measures of Similarity and Dissimilarity
    Ruler Distance
    Standardized Ruler Distance
    A Mahalanobis Distance
    Dissimilarity Measures
   9.2 Graphical Aids in Clustering
    Scatter Plots
    Using Principal Components
    Andrews' Plots
    Other Methods
   9.3 Clustering Methods
    Nonhierarchical Clustering Methods
    Hierarchical Clustering
    Nearest Neighbor Method
    A Hierarchical Tree Diagram
    Other Hierarchical Clustering Methods
    Comparisons of Clustering Methods
    Verification of Clustering Methods
    How Many Clusters?
    Beale's F-Type Statistic
    A Pseudo Hotelling's T2 Test
    The Cubic Clustering Criterion
    Clustering Order
    Estimating the Number of Clusters
    Principal Components Plots
    Clustering with SPSS
    SAS's FASTCLUS Procedure
   9.4 Multidimensional Scaling
    Exercises
  10. MEAN VECTORS AND VARIANCE-COVARIANCE MATRICES
   10.1 Inference Procedures for Variance-Covariance Matrices
    A Test for a Specific Variance-Covariance Matrix
    A Test for SphericityA Test for Compound Symmetry
    A Test for the Huynh-Feldt Conditions
    A Test for Independence
    A Test for Independence of Subsets of Variables
    A Test for the Equality of Several Variance-Covariance
    Matrices
   10.2 Inference Procedures for a Mean Vector
    Hotelling's T2 Statistic
    Hypothesis Test for μ
    Confidence Region for μ
    A More General Result
    Special Case—A Test of Symmetry
    A Test for Linear Trend
    Fitting a Line to Repeated Measures
    Multivariate Quality Control
   10.3 Two Sample Procedures
    Repeated Measures Experiments
   10.4 Profile Analyses
   10.5 Additional Two-Group Analyses
    Paired Samples
    Unequal Variance-Covariance Matrices
    Large Sample Sizes
    Small Sample Sizes
    Summary
    Exercises
  11. MULTIVARIATE ANALYSIS OF VARIANCE
   11.1 MANOVA
    MANOVA Assumptions
    Test Statistics
    Test Comparisons
    Why Do We Use MANOVAs?
    A Conservative Approach to Multiple Comparisons
   11.2 Dimensionality of the Alternative Hypothesis
   11.3 Canonical Variates Analysis
    The First Canonical Variate
    The Second Canonical Variate
    Other Canonical Variates
   11.4 Confidence Regions for Canonical Variates
    Summary
    Exercises
  12. PREDICTION MODELS AND MULTIVARIATE REGRESSION
   12.1 Multiple Regression
   12.2 Canonical Correlation Analysis
    Two Sets of Variables
    The First Canonical Correlation
    The Second Canonical Correlation
    Number of Canonical Correlations
    Estimates
    Hypothesis Tests on the Canonical Correlations
    Interpreting Canonical Functions
    Canonical Correlation Analysis with SPSS
   12.3 Factor Analysis and Regression
    Summary
    Exercises
  APPENDIX A: MATRIX RESULTS
   A.1 Basic Definitions and Rules of Matrix Algebra
   A.2 Quadratic Forms
   A.3 Eigenvalues and Eigenvectors
   A.4 Distances and Angles
   A.5 Miscellaneous Results
  APPENDIX B: WORK ATTITUDES SURVEY
   B.1 Data File Structure
   B.2 SPSS Data Entry Commands
   B.3 SAS Data Entry Commands
  APPENDIX C: FAMILY CONTROL STUDY
  REFERENCES
  Index
 

                        
                        
                    







